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We present a dynamical mean-field theory �DMFT� study of strongly correlated heterostructures. In contrast
to previous DMFT work on multilayered systems, which was mainly based on the single-site approximation,
we investigate the role of interplanar Coulomb correlations by using cellular DMFT. Accordingly, the self-
energy matrix exhibits off-diagonal components in the layer index. As a model system we consider the
single-band Hubbard model in a thin film geometry. The films can be either free standing or sandwiched
between semi-infinite metallic leads. For isolated thin films, it is shown that the metal-insulator phase transition
occurs either via a conventional mechanism, with a diverging imaginary part of the local self-energy, or via
another one involving a discontinuous change of the real part of the off-diagonal self-energy. When the film is
connected to metallic leads, the former phase transition disappears due to the normal-metal proximity effects,
whereas the latter survives and significantly influences the electronic properties of the thin film. The leakage of
metallic states into the Mott gap of the correlated film is greatly reduced compared to single-site DMFT
calculations.
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I. INTRODUCTION

Recent progress in thin-film technology such as pulsed
laser deposition has enabled the synthesis of atomically flat
thin films. Among them, heterostructures made by stacking
ultrathin layers of perovskite crystals have been a target of
intense study because of relatively small lattice mismatch
among constituent bulk crystals.1–5 In particular, those in-
cluding transition-metal elements with a partially filled d
shell have attracted much attention because of interesting
phenomena induced by strong Coulomb interactions and by
additional physical effects peculiar to layered systems, such
as electron confinement in thin layers, band filling change
due to charge transfer across the interface, and structural
relaxations near boundary layers.6–10 A well-known example
is the formation of a conducting layer at the interface be-
tween a Mott insulator LaTiO3 and a band insulator SrTiO3
as reported in the pioneering work of Ohtomo et al.6

Theoretical research on strongly correlated electrons in
inhomogeneous layered systems was initiated by Potthoff
and Nolting,11,12 who studied the metal-insulator transition
�MIT� at the surface of the single-band Hubbard model by
using the single-site dynamical mean-field theory
�DMFT�.13,14 Within this approximation, the electron self-
energy for each layer is determined by solving a separate
many-body impurity problem. Nevertheless, since the Weiss
mean-field for each layer, which is derived from the lattice
Green’s function of the whole system, depends on the self-
energies of the neighboring layers, the self-consistent equa-
tions for determining the self-energies of all layers are
coupled. Stimulated by recent experiments on strongly cor-
related heterostructures, theoretical studies of inhomoge-
neous layered systems were performed for a number of sys-
tems by employing tight-binding model Hamiltonians with a
Hubbard-like Coulomb repulsion term, and in some cases,
also with the long-range Hartree potential term accounting

for charge redistributions across the layers.15–30 The main
focus of these DMFT studies were heterostructures for a thin
film sandwiched between two bulk systems16–21 and inter-
faces between two bulk systems.22–24 Most of these studies
adopt single-site DMFT. An exception is the cellular DMFT
�CDMFT�31 study of Yunoki et al.,24 who used a four-site
cluster within each layer in solving the quantum impurity
problem and explored the possibility of magnetic ordering
and superconductivity at the interface between undoped
high-Tc cuprates and manganites. Spatial fluctuations be-
tween layers were neglected. The role of interlayer correla-
tions was, however, studied within a bilayer t-J model by
Heindl et al.25

In the present work, we pursue another direction by study-
ing the effect of interlayer electron correlations in inhomo-
geneous layered systems with strong Coulomb interactions.
In principle, of course, intersite correlations both parallel and
perpendicular to the planes comprising a heterostructure
might be important. In view of the exponentially growing
numerical effort, however, it is presently necessary to focus
on relatively small clusters consisting of only few sites. Cor-
relations in the normal direction to the layer structure are of
particular interest because of the proximity effect at the in-
terface between strongly and weakly correlated materials.
For instance, metallic states at the Fermi level of one system
can spill over into the gap of an adjacent Mott insulator.
Also, the correlation induced effective mass enhancement in
one compound can give rise to mass enhancement in a neigh-
boring weakly correlated metal. Since these phenomena have
been studied so far only within single-site DMFT, it is of
great interest to investigate to what extent these kinds of
proximity effects are modified by spatial fluctuations in the
normal direction. Intersite correlations within planes parallel
to the interface are neglected in the present work.

As in previous works, we employ a single-band Hubbard
Hamiltonian to model the system, but perform CDMFT cal-
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culations, where a one-dimensional �1D� chain oriented nor-
mal to the layer plane is chosen as a cluster in solving the
quantum impurity problem. Thus, while interatomic electron
correlations within the same layer are ignored, the off-
diagonal elements of the electron self-energy between neigh-
boring layers are fully taken into consideration. As a model
system, we consider a sandwich structure in which a thin
layer of a strongly correlated material is connected to non-
interacting metallic leads on both sides. As a reference sys-
tem, we also study the electronic structure of free-standing
films not attached to metallic leads. The focus here is on
spatial fluctuations within the strongly correlated material of
the heterostructure. Fluctuations across the interface between
strongly and weakly correlated systems are also interesting,
but will not be addressed in this paper.

The main result of this work is that the presence of inter-
layer electron correlations qualitatively changes the nature of
the MIT in a strongly correlated thin film. For isolated films
not attached to metallic leads, an insulating gap can be
opened via a mechanism characterized by a discontinuous
change in the real part of the off-diagonal self-energy be-
tween nearest-neighbor layers. This is in contrast to a more
conventional MIT where the divergence of the imaginary
part of the local self-energy induces the insulating gap. Fur-
thermore, while the MIT via the conventional mechanism
disappears due to the normal-metal proximity effects when
the film is connected to metallic leads,23 the phase transition
with a discontinuous change in the real part of the self-
energy continues to exist even in the presence of metallic
leads, giving rise to electronic properties which are qualita-
tively different from those obtained from a single-site DMFT
treatment. In particular, we demonstrate that the penetration
of metallic lead states into the Mott gap of the correlated film
is strongly reduced compared to the one derived within
single-site DMFT. Moreover, as a consequence of interplanar
correlations, the critical Coulomb energies are considerably
lower than those obtained within local DMFT.

These results indicate that spatial fluctuations between the
planes of a heterostructure are of similar significance as in-
traplanar fluctuations in two-dimensional �2D� correlated
systems.32–34 Results derived within inhomogeneous single-
site DMFT may therefore serve for qualitative purposes, but
should be revised considerably, both with respect to the na-
ture of the Coulomb driven metal-insulator transition and the
magnitude of critical Coulomb energies.

The outline of this paper is as follows. In Sec. II, we
describe the present model and discuss several theoretical
details concerning our CDMFT calculations. In Sec. III, we
present the numerical results and analyze them with particu-
lar focus on the difference obtained within CDMFT and
single-site DMFT treatments. Section IV contains the sum-
mary.

II. THEORY

We consider inhomogeneous layered systems made by
stacking the �001� planes of a simple cubic lattice with lattice
constant a in the z direction. The jth layer is located at zj
= ja, and the 2D lattice vector in the plane is denoted by x

whose x and y components are multiples of a. We use index
p= �x ,zj� to specify an atomic site in the system. For sim-
plicity, we consider the single-band Hubbard model. The
single-electron part of the Hamiltonian is

ĥ = �
p�

�pn̂p� − �
�pp���

�tpp�cp�
† cp�� + H.c.� , �1�

while the interaction part is given by

v̂ = �
p

Upn̂p↑n̂p↓, �2�

where cp� �cp�
† � is the electron annihilation �creation� opera-

tor at site p with spin �, n̂p�=cp�
† cp�, and the summation in

the second term in Eq. �1� is taken over pairs of nearest-
neighbor sites. Throughout the present paper, we will denote

the operator corresponding to a physical quantity A by Â and
its matrix elements by App�. All sites within a layer are as-
sumed to be equivalent. We label the site energy of layer j as
� j, the Coulomb energy of layer j as Uj, the x and y compo-
nents of the in-plane transfer integrals in layer j as tj

x and tj
y,

and the transfer integral between two nearest-neighbor lay-
ers, j and j�= j�1, as tjj�

z .
We like to calculate the finite-temperature Green’s func-

tion of the full Hamiltonian Ĥ= ĥ+ v̂,

Gp�,p����i�n� = �p���i�n + � − ĥ − �̂�i�n��−1�p���� , �3�

where � denotes the chemical potential of the system, �n
= �2n+1�	kBT are Matsubara frequencies at temperature T,

and �̂�i�n� denotes the frequency-dependent self-energy de-
scribing the effect of Coulomb interactions. In the present
work we consider only paramagnetic systems and omit here-
after spin indices for simplicity.

Furthermore, we exploit translational symmetry in the
planes. By introducing the 2-D wave vector k �−	 /a

kx ,ky 
	 /a�, the lattice Green’s function Eq. �3� can be
expressed as

Gpp��i�n� =	 dk

�2	�2eik·�x−x��

� �j��i�n + � − Ĥ�k,i�n��−1�j�� , �4�

where p= �x ,zj�, p�= �x� ,zj��, and the Hamiltonian matrix el-
ements in the mixed representation are given by

Hjj��k,i�n� = Ej�k�� j j� − tjj�
z + � j j��k,i�n� , �5�

where

Ej�k� = � j − 2tj
x cos�kxa� − 2tj

y cos�kya� . �6�

We consider isolated thin films consisting of N atomic
layers as well as those attached to semi-infinite bulk systems
�see Fig. 1�. For the latter, we treat explicitly only the central
region made out of N layers �1
 j
N�. The effects of the
semi-infinite left lead �j1� and right lead �j�N� on the
sides of the central system are expressed by adding tight-
binding embedding potential terms30,35 to Eq. �5�. In prin-
ciple, the embedded region could also include the first or first
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few planes of the leads, making their self-energies also layer
dependent. We neglect this effect here and assume all layers
of the semi-infinite leads to be noninteracting. Thus,

Hjj��k,i�n� = Ej�k�� j j� − tjj�
z + � j j��k,i�n� + sjj�

L �k,i�n�

+ sjj�
R �k,i�n� , �7�

where 1
 j, j�
N, and sjj�
L �sjj�

R � are the matrix elements of
the embedding potential representing the left �right� lead. We
employ the nearest-neighbor tight-binding Hamiltonian in
the same form as Eq. �1� to represent semi-infinite noninter-
acting leads. In this case the only nonvanishing matrix ele-
ment for the left lead is

s11
L �k,�� = �t01

z �2g00
L �� − EL�k�� , �8�

where

EL�k� = �L − 2tL
x cos�kxa� − 2tL

y cos�kya� , �9�

with �L, tL
x , and tL

y being the site-energy and parallel compo-
nents of transfer integrals in the left lead. In Eq. �8�, gjj�

L

�j , j�
0� denotes the Green function of a semi-infinite tight-
binding chain with nearest-neighbor transfer integral, −tL

z ,
whose surface element is given by36

g00
L �w� =

w − 
w2 − 4�tL
z �2

2�tL
z �2 . �10�

Similarly, the matrix elements of the right-lead embedding
potential vanish except for sNN

R �k ,��, which has the same
form as Eq. �8� with the tight-binding parameters replaced by
those corresponding to the right lead.

To determine the self-energy matrix, we apply CDMFT,31

i.e., the system is divided into a periodic array of clusters
consisting of several atomic sites. The off-diagonal compo-
nents of the self-energy within each cluster are fully taken
into consideration, while those between two sites on neigh-
boring clusters are assumed to vanish. As shown in Fig. 1,
we choose the 1D atomic chain consisting of N atomic sites
oriented in the z direction as a unit cluster. In this case the
self-energy matrix elements in Eq. �3�, �pp��i�n�, become
nonvanishing only for those with x=x�, resulting in a

k-independent self-energy matrix in the mixed representa-
tion. On the other hand, in contrast to previous DMFT stud-
ies for multilayered systems, we fully incorporate the off-
diagonal components of the self-energy between different
layers. Thus, by removing index k, the self-energy matrix
elements in Eqs. �5� and �7� are written as � j j��i�n�.

By setting x=x�=0 in Eq. �4�, we obtain the interacting
lattice Green’s function of the cluster located at x=0,

Gjj��i�n� =	 dk

�2	�2 �j��i�n + � − Ĥ�k,i�n��−1�j�� . �11�

The bath Green’s function determining the Weiss mean-field
Hamiltonian is obtained by removing the self-energy matrix
from this lattice Green’s function as,

Gjj�
0 �i�n� = �Ĝ−1�i�n� + �̂�i�n�� j j�

−1 , �12�

where all the quantities on both sides are N�N matrices
defined for atomic sites in the cluster at x=0. The next task is
to solve the many-body impurity problem in which the local
Coulomb interactions of the form Eq. �2� are added to the
N-site cluster at x=0 whereas the rest of the system is rep-
resented by a non-interacting Hamiltonian corresponding to
the Weiss mean-field.

As impurity solver, we adopt the finite-temperature exact

diagonalization �ED� technique37 in which Ĝ0 in Eq. �12� is
approximated by the Green’s function of an isolated cluster
consisting of N impurity levels plus nb bath levels as,

Gjj�
0 �i�n� � Gjj�

cl,0�i�n� = �i�n + � − ĥcl�i�n�� j j�
−1 , �13�

where

hjj�
cl �i�n� = Ẽj� j j� − t̃ j j�

z + �
k=1

nb VjkVkj�

i�n − �̃k

. �14�

Here Ẽj �1
 j
N� represent impurity levels, t̃ j j� are transfer
integrals among N impurity levels, �̃k are bath levels, and Vjk
specify the hybridization matrix between the impurity and
bath levels. These fitting parameters are chosen such that

Ĝcl,0 approximates Ĝ0 as accurately as possible at the Mat-
subara frequencies on the imaginary energy axis. We then

calculate Ĝcl, the interacting Green’s function of the cluster,
in which the onsite Coulomb interaction term of the form Eq.

�2� is added to the non-interacting Hamiltonian ĥcl. Numeri-

cal details concerning the calculation of Ĝcl are described in
Ref. 38. Finally, we determine the self-energy matrix of the
N-site impurity via

� j j�
cl �i�n� = �Gcl,0� j j�

−1 − �Gcl� j j�
−1 . �15�

The key assumption in DMFT is now that this impurity self-
energy is a physically reasonable representation of the lattice

self-energy. Thus, �̂cl�i�n� in Eq. �15� is used as the input
self-energy in Eq. �11� for the next iteration. This procedure
is iterated until the difference between the input and output
self-energy matrices becomes sufficiently small.

For comparison, we also perform a single-site inhomoge-
neous DMFT calculation where the self-energy matrix in

U U U1 2 Nleft lead right lead

FIG. 1. �Color online� Tight-binding model for inhomogeneous
layered systems. The central system made out of N layers is treated
explicitly, while the effects of the left and right leads are incorpo-
rated by using the embedding potentials acting on the boundary
layers. Interplanar Coulomb correlations are included within 1D
atomic chains indicated by dashed rectangles. These chains form
the N-site clusters used in the CDMFT calculation. The heterostruc-
ture is translationally invariant in the parallel direction.
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Eqs. �5� and �7� is assumed to be layer diagonal, i.e.,
� j j��i�n�=� j j�i�n�� j j�. For each layer j �1
 j
N�, one cal-
culates the lattice Green function,

Gjj�i�n� =	 dk

�2	�2 �j��i�n + � − Ĥ�k,i�n��−1�j� , �16�

and further, the bath Green’s function defined by

Gjj
0 �i�n� = �Gjj

−1�i�n� + � j j�i�n��−1. �17�

As in the case of CDMFT, we employ the ED technique37

and approximate Gjj
0 by the non-interacting Green function

of an isolated cluster consisting of a single impurity level
and nb bath levels as,

Gjj
0 �i�n� � Gjj

cl,0�i�n� = �i�n + � − hjj
cl�i�n��−1, �18�

where

hjj
cl�i�n� = Ẽj + �

k=1

nb VjkVkj

i�n − �̃k

. �19�

Then, by adding the Coulomb interaction with strength Uj on
the impurity site, one calculates the interacting Green’s func-
tion of the cluster, Gjj

cl, for all layers. Thus, instead of solving
the N-site impurity problem, one solves N independent
single-impurity problems. The output impurity self-energy of
layer j is evaluated as

� j j
cl�i�n� = �Gjj

cl,0�−1 − �Gjj
cl�−1, �20�

which is used in calculating the next lattice Green’s function
via Eq. �16�. The iteration procedure is repeated until input
and output self-energies converge to a required accuracy.

III. RESULTS AND DISCUSSION

The model outlined above may, in principle, be used to
study charge transfer at the interface by adjusting the single-
electron Hamiltonian parameters. To focus on interlayer cor-
relation effects, however, we consider here the special case
in which all transfer integrals have the same value, i.e., tj

x,y

= tjj�
z = t, including the central layers and both leads. Thus,

without Coulomb interactions, the system represents a bulk
simple cubic lattice characterized by a transfer integral t,
which will be chosen as the unit of energy. For simplicity, we
further choose the site energy � j as −Uj /2 and the chemical
potential � as 0, so that the system is half-filled and particle-
hole symmetric. In the strongly correlated layers �1
 j
N�,
we assume Uj =U. The system therefore is characterized by
three parameters: U, N, and �= �kBT�−1. In the following we
present results for a low temperature, �=100.

In applying the ED formalism we use nb=3N bath levels
to represent the bath Green’s function. Thus, the total num-
ber of orbitals in the ED calculation amounts to N+nb=4N.
With our present numerical capability, the maximum number
of layers that can be treated by the full CDMFT scheme is
N=3 �12 orbitals�. Nevertheless, our CDMFT results for N
=2 and 3 demonstrate that spatial fluctuations between layers
give rise to a much richer physics than the scenario obtained
within single-site DMFT. For the single-site DMFT, we use

nb=3 bath levels for each layer. While this choice slightly
favors the insulating solution over the metallic one and does
not yet achieve fully converged critical Coulomb energies for
the MIT, it is the most suitable one for the purpose of com-
paring single-site and cluster DMFT results.

A. Isolated N=2 film

We begin with a two-layer film not attached to metallic
leads. The effects of Coulomb interactions are expressed in
terms of the electron self-energy. For the present half-filled
two-layer film with particle-hole symmetry, R�11=R�22
=U /2, I�12=0, while I�11=I�22 and R�12 are nontrivial
functions of Matsubara frequency. Also, the self-energy is
symmetric with respect to layer indices, i.e., �ij =� ji.

To discuss the MIT induced by onsite Coulomb interac-
tions, we plot in Fig. 2�a� the imaginary-time Green’s func-
tion at �=� /2, which is related to the quasiparticle density of
states �DOS�, i.e., the imaginary part of the retarded Green’s
function via

Gjj��/2� = 	−1	 d�F���IGjj��� . �21�

Here, F���=0.5 /cosh����−�� /2� is a distribution of width
4 ln�2+
3� /� centered about the chemical potential �.
−Gjj�� /2� represents the integrated spectral weight within a
few kBT of � and drops from a finite value to zero when the
system undergoes a MIT. As the second criterion we plot in
Fig. 2�b� the double occupancy of an atomic site, �n̂p↑n̂p↓�.
Within single-site DMFT, the MIT occurs at Uc2

s for increas-
ing U and at Uc1

s for decreasing U. This hysteresis behavior

FIG. 2. �Color online� �a� G11�� /2�, imaginary-time Green’s
function at �=� /2 and �b� double occupancy of an atomic site in
the first layer �j=1� for an isolated two-layer film as a function of
Coulomb energy U at �=100. Solid circles and triangles correspond
to cluster and single-site DMFT calculations, respectively. Note the
hysteresis behavior for increasing and decreasing U as indicated by
the arrows.
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is characteristic of a first-order phase transition. Within CD-
MFT, the MIT occurs at considerably lower Coulomb ener-
gies, Uc1 and Uc2. This trend is consistent with a recent CD-
MFT study of the 2D Hubbard model, where the critical U
for the gap opening was found to decrease with increasing
cluster size.33

Even more significant than this overall lowering of critical
Coulomb energies is the fact that the nature of the MIT
within single-site and cluster DMFT differs qualitatively. To
illustrate this point, we first show in Fig. 3�a� the imaginary
part of �11 as a function of Matsubara frequency obtained
within single-site DMFT. It exhibits a characteristic behavior
similar to the one found in single-site DMFT studies of bulk
systems. In the metallic phase, I�11 is proportional to �n at
small �n, with its slope in the limit of �n→0 determining the
quasiparticle weight Z. On the other hand, when U crosses
the critical value, I�11 diverges as 1 /�n, resulting in the
opening of an insulating gap at �. In contrast to these single-
site DMFT results, CDMFT yields a rather different picture.
As shown in Fig. 3�b�, I�11 does not diverge but remains
proportional to �n at small �n, even when U is in the insu-
lating range �U=8.75�. Instead, as can be seen in Fig. 3�c�,
the opening of the gap in CDMFT is induced by an abrupt
change in the real part of the interlayer component of the
self-energy, R�12. To see this more clearly, we show in Fig.
4�a� R�12�i�0� as a function of U, where �0=	kBT denotes
the first Matsubara frequency. Evidently, this quantity exhib-

its a discontinuous change at the critical Coulomb energies.
For N=2, it is useful to introduce the molecular orbital

�MO� basis,

�e� =
1

2

��1� + �2�� ,

�o� =
1

2

��1� − �2�� , �22�

where �e� and �o� are even and odd with respect to the slab
center. Because of symmetry, the self-energy and Green’s
function matrices are diagonal with respect to these MO ba-
sis functions. Since the Hamiltonian matrix elements are
given by

Hee�k,i�n� = − t − 2t�cos�kxa� + 2 cos�kya�� + R�12�i�n�

+ I�11�i�n� ,

Hoo�k,i�n� = + t − 2t�cos�kxa� + 2 cos�kya�� − R�12�i�n�

+ I�11�i�n� , �23�

the splitting of the �e� and �o� bands due to the abrupt change
in R�12 at the critical U, together with band narrowing

FIG. 3. �Color online� Self-energy components of an isolated
2-layer film as a function of Matsubara frequency �n at �=100. �a�
I�11 within single-site DMFT. �b� I�11 and �c� R�12 within CD-
MFT. Note the break in the vertical scale at −1.3 in �c�.

FIG. 4. �Color online� �a� R�12 at the first Matsubara frequency
�0=	 /� �b� ne, occupation of the molecular orbital �e�, minus 1/2,
and �c� �12��=0�, interlayer spin correlation at �=0, as functions of
U at �=100 within CDMFT. Solid circles and triangles correspond
to the isolated and sandwiched two-layer films, respectively.
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caused by I�11, gives rise to an insulating gap at �, between
the more than half filled �e� band and the less than half filled
�o� band. The solid circles in Fig. 4�b� show the deviation in
occupation of the two bands from one half, ne−1 /2=1 /2
−no=RG12��=0�, as a function of U. ne and no change dis-
continuously when the system undergoes the MIT, although
the magnitude of this jump, �0.03, is rather small.

A similar MIT was reported in a recent CDMFT study of
Park et al. for the Hubbard model on a 2D square lattice at
half-filling.34 They employed a 2�2 cluster to study the ef-
fects of short-range correlations on MIT and found that the
MIT is accompanied by a splitting of the � orbital corre-
sponding to �kx ,ky�= �0,0� and the M orbital corresponding
to �	 ,	� caused by a discontinuous change in the real part of
the off-diagonal components of the self-energy connecting
nearest-neighbor sites in the cluster.

The opening of the insulating gap can be seen most
clearly in the �e� and �o� components of the quasiparticle
DOS which are shown in Fig. 5. Since we are concerned here
with the MIT, we plot the ED cluster spectra, − 1

	IGjj
cl��

+ i�� with a broadening parameter �=0.1, which can be
evaluated without requiring extrapolation from Matsubara to
real frequencies. In the metallic phase �U=7.8�, the spectra
of both MO’s consist of a quasiparticle peak near �=0 and
upper and lower Hubbard bands. In the insulating phase �U
=8.75�, an insulating gap appears near �=0 which opens via
an abrupt change in R�12 as discussed above. Although the
one-electron Green’s function is diagonal with respect to the
two MO’s, the even and odd bands are coupled via many-
body Coulomb interactions. As a result, the quasiparticle
DOS of both �e� and �o� bands exhibit considerable spectral
weight on both sides of the energy gap.

We point out here that the opening of the gap seen in Fig.
5 is not an artifact caused by the finite size of the bath used
in the ED calculation. The near absence of finite-size prob-
lems is evident from the perfectly smooth variation of the

self-energy components even at very small Matsubara fre-
quencies as shown in Fig. 3. This behavior is related to the
highly accurate projection of the lattice bath Green’s func-
tions Gjj�

0 �i�n� onto the corresponding cluster function
Gjj�

cl,0�i�n�, as indicated in Eqs. �13� and �14�. Evidently, us-
ing three bath levels per molecular orbital site, both metallic
and insulating features are captured very well. For instance,
the linear variation of I�11�i�n� at small �n and not too large
values of U in Fig. 3 implies the existence of a well-defined
quasiparticle peak in the lattice Green’s function at EF �not
shown here�. Thus, the gap opening at larger U is purely
related to the rapid increase of R�12�i�n�.

To investigate the nature of the MIT in more detail we
have calculated the non-local spin correlations characterized
by �ij���= �ŝzi���ŝzj�0�+ ŝzj���ŝzi�0�� /2, where � represents
imaginary time, and i and j are layer indices. In Fig. 6, we
show the intralayer and interlayer components of the spin
correlation function in the metallic �U=7,7.8� and insulating
�U=8.75,11� regimes. The intralayer component �11 decays
with �, so that ���=� /2� is very small, indicating that the
susceptibility, �m�0

��ŝz1���ŝz1�0��d�, is Pauli-like in both
metallic and insulating regions. In the insulating region, �11
decays less rapidly, implying a larger value of the spin sus-
ceptibility. Concerning the interlayer component, as can be
seen from Fig. 6, in the metallic range interlayer correlations
are much weaker than onsite intralayer correlations. In the
insulating region, however, �12��=0��−0.25, indicating the
formation of nonlocal spin singlets between neighboring
planes. To see this behavior more clearly, we plot in Fig. 4�c�
�12��=0� of the isolated two-layer film as a function of U by
solid circles. It is seen that this value exhibits a discontinu-
ous change as the system undergoes the MIT.

B. Sandwiched N=2 film

We now consider a two-layer film sandwiched between
two semi-infinite noninteracting metallic leads. As stated be-

FIG. 5. �Color online� Quasiparticle components of DOS of ED
cluster for an isolated two-layer film at �=100 within CDMFT.
Solid curve: �e�; dashed curve: �o�. �a� U=7.8, and �b� U=8.75.

FIG. 6. �Color online� �a� Intralayer and �b� interlayer spin cor-
relations as functions of imaginary time for an isolated two-layer
film at �=100 in the metallic �U=7,7.8� and insulating �U
=8.75,11� regimes.
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fore, the system becomes a half-filled simple cubic crystal
with band width W=12 when U=0. Solid circles and tri-
angles in Fig. 7�a� show −G11�� /2� as a function of U ob-
tained within cluster and single-site DMFT, respectively. In
contrast to Fig. 2�a�, within single-site DMFT the sand-
wiched film shows no first-order phase transition and
−G11�� /2� remains nearly constant. As recently discussed by
Zenia et al.21 using the same half-filled single-band Hubbard
model in the sandwich geometry combined with single-site
DMFT, the coherent peak at �=0 continues to exist due to
the normal-metal proximity effect23 if T�TF. Here, TF is a
layer-dependent effective Fermi temperature which decreases
exponentially with increasing U and with increasing distance
from the lead. They called this phenomenon the appearance
of a “fragile” Fermi liquid in a thin Mott-insulator film.21 In
the present calculation at �=100 and N=2, this condition is
clearly fulfilled, explaining why −G11�� /2�, the integrated
spectral weight around �=0, remains nearly constant up to
U�11.5, i.e., at Coulomb energies where the free-standing
film would clearly be Mott insulating.

In striking contrast to this single-site DMFT behavior, the
CDMFT results for −G11�� /2� shown in Fig. 7�a� exhibit a
hysteresis characteristic of a first-order phase transition. The
critical Coulomb energies Uc1 and Uc2 are shifted by �1.7 to
larger values as compared with those for the isolated film
shown in Fig. 2�a�. The nature of this phase transition is
essentially the same as that of the isolated film. This is illus-
trated in Fig. 4 where we plot R�12�i�0�, ne−1 /2, and
�12��=0� as functions of U. In close analogy to the isolated
two-layer film, the phase transition is accompanied by an
abrupt change in R�12, which leads to the splitting of the �e�
and �o� bands. As in the case of the isolated film, the phase at
larger U is characterized by larger negative spin correlations
between neighboring planes.

In Fig. 8�a�, we plot the �e� and �o� components of the ED
cluster spectra at U=11�Uc2 calculated with the same
broadening parameter � as in Fig. 5. In contrast to the cor-
responding DOS within single-site DMFT, which exhibits a
quasiparticle peak at �=0 at the same U, the chemical po-
tential in Fig. 8�a� is located between the two DOS peaks
resulting from the splitting of the two bands. To see this
point more clearly, we evaluate the quasiparticle DOS of the
solid by extrapolating the Green’s function from Matsubara
frequencies to real energies by making use of the extrapola-
tion subroutine ratint.39 The inset in Fig. 8�a� shows the ob-
tained spectra near �=0, which was found to be quite insen-
sitive to the number of Matsubara frequencies used in the
extrapolation procedure. It is seen that � is located between
two sharp DOS peaks at �= �0.15. Characteristic features of
this DOS near � are very similar to the ones obtained for the
2D Hubbard model in the insulating phase in recent CDMFT
studies.32,34 As can be seen in the inset, the DOS between the
two peaks does not vanish in the present case. Instead, it has
a nearly constant positive value, which may be interpreted as
arising from the metallic states of both leads penetrating into
the central film.

Our CDMFT calculation suggests that, as a result of in-
terplane correlations, the “fragile” Fermi-liquid state in a
sandwiched Mott-insulator film as proposed by Zenia et al.21

no longer exists, even for a thin film consisting only of two
layers. Instead, the system undergoes a phase transition to an
energetically more favorable state in which the Fermi-liquid
coherence peak at � is absent.

Another interesting quantity characterizing the sand-
wiched film is the conductance of the junction. While the
electronic current through a thin film under application of a
finite bias voltage between two metallic leads can be evalu-
ated only by performing a nonequilibrium Green’s function
calculation,40,41 the conductance in zero-bias limit can be
evaluated from the equilibrium Green’s function as42

FIG. 7. �Color online� �a� G11�� /2�, imaginary-time Green’s
function at � /2, and �b� normalized conductance � /�0 in the zero-
bias limit for a two-layer film sandwiched between two semi-
infinite metallic leads as a function of U at �=100. Solid circles:
CDMFT; triangles: single-site DMFT.

FIG. 8. �Color online� Quasiparticle components of DOS of ED
cluster for a sandwiched film at �=100 within CDMFT. �a� N=2.
Solid curve: �e�; dashed curve: �o�. �b� N=3. Solid curve: �e1�;
dashed curve: �o�; dashed-dotted curve: �e2�. The inset in panel �a�
shows the total solid DOS for N=2 obtained by extrapolating the
Green function from Matsubara frequencies to real energies.
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� =
dJ

dV
=

2e2

h
	 dk

�2	�2��k� , �24�

where J is the electronic current per unit area, V denotes the
bias voltage, and � is defined in terms of the lead embedding
potentials and the retarded Green’s function at �:

��k� = 4 Tr�IŝL�k,��Ĝ�k,��IŝR�k,��Ĝ��k,��� . �25�

In the non-interacting limit �U=0�, ��k� coincides with elec-
tron transmission rate. In the non-interacting limit, the
present system reduces to a three-dimensional �3D� simple
cubic lattice without defects. Thus, ��k� at U=0 is unity or
zero depending on whether k is located inside or outside the
projection of the 3D Fermi surface onto the 2D Surface Bril-
louin zone. In Fig. 7�b� we show the calculated conductance
normalized by its value at U=0, �0, as a function of U. To
derive G1,N�k ,�� from the Green’s function on Matsubara
frequencies, we again made use of ratint.39 In the single-site
DMFT calculation �triangles�, the film possesses a perfect
conductivity �� /�0=1� up to U�11.5, since the system re-
mains a Fermi liquid due to the normal-state proximity ef-
fects as discussed above. Thus, the scattering rate, I� j j, van-
ishes at �=0. For larger U, � /�0 starts to deviate from unity,
implying that the condition T�TF ceases to hold and the
system enters a non-Fermi-liquid state.

The conductance obtained within CDMFT �solid circles�
differs qualitatively from the one derived within the single-
site approximation. Whereas the components of the imagi-
nary part of the self-energy vanish at �=0, R�12 has a finite
value at �=0 as shown in Fig. 3�c�. This means that the
effective transfer integral between the first and second layers
deviates from the bulk value, tjj�

z =1. As a result, electrons
incident from the interior of the left or right lead with energy
� are partly reflected at the interface. As R�12 is propor-
tional to U2 at small U, � /�0 deviates from unity quadrati-
cally as a function of U. Furthermore, the conductance drops
to much smaller values when the system undergoes a first-
order phase transition at the critical Coulomb energies. The
electron conduction in the large-U phase may be understood
in terms of electron tunneling through an insulatorlike thin
film.

C. Isolated N=3 film

Next, we investigate a free-standing three-layer film not
connected to metallic leads. In the present half-filled three-
layer film with particle-hole symmetry, R� j j =U /2
�j=1. . .3�, I�12=I�23=R�13=0, while the other compo-
nents, I�11=I�33, I�22, R�12=R�23, I�13, are nontrivial
functions of Matsubara frequency.

In Figs. 9�a� and 9�b�, we plot −Gjj�� /2�, the imaginary-
time Green’s function at �=� /2, for the outer �j=1,3� and
middle �j=2� layers, respectively. In single-site DMFT, there
exists a single first-order phase transition. All layers become
insulating at Uc2

s for increasing U and return to a metallic
state at Uc1

s for decreasing U. As in the case of N=2, the
imaginary part of the local self-energy � j j is proportional to
�n at small �n in the metallic phase, while it diverges as
1 /�n in the insulating phase �not shown�.

In striking contrast, the CDMFT results reveal two suc-
cessive first-order phase transitions. The MIT of the central
layer �j=2� takes place at a smaller critical Coulomb energy,
Uc1�c2� �see panel �b��. At these Coulomb energies, the inte-
grated spectral weight near �=0 of the outer layers
�j=1,3� is approximately halved �see panel �a��.

The MIT of these layers occurs at larger Coulomb ener-
gies, Uc1�c2�� . Apart from this qualitative difference, the MIT
within CDMFT is completed at much lower U values than
those predicted by single-site DMFT, just as in the case of
the isolated two-layer film discussed above.

In the present model, the self-energy and Green’s function
matrices of the three-layer film are block diagonal with re-
spect to three MO basis functions:

�e1� =
1

2
��1� + 
2�2� + �3�� ,

�e2� =
1

2
��1� − 
2�2� + �3�� , �26�

are even with respect to the slab center and form a 2�2
block, while

FIG. 9. �Color online� Gjj�� /2� of an isolated three-layer film as
a function of Coulomb energy U at �=100 for �a� outer layer
�j=1,3�, �b� middle layer �j=2�, and �c� three molecular orbitals.
Solid circles: CDMFT; triangles: single-site DMFT.
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�o� =
1

2

��1� − �3�� , �27�

is odd with respect to the slab center and forms a 1�1 block.
�e1� and �e2� constitute eigenstates of the noninteracting
three-layer film, and in this limit the 2�2 matrix of the
Green’s function of the even orbitals becomes diagonal. For
finite U, the Green’s function is not diagonal because of the
nonvanishing off-diagonal Hamiltonian element, giving rise
to a finite −�e1e2

.
In Fig. 9�c�, we replot −Gjj�� /2� of the isolated three-

layer film using the MO basis. Evidently, the phase-transition
between Uc1 and Uc2 can be regarded as the MIT of the even
orbitals, while the second one between Uc1� and Uc2� is the
transition of the odd orbital �o�. As noted above, the even and
odd bands are coupled via many-body Coulomb interactions.
As a consequence, −Goo�� /2�, the integrated spectral weight
of the �o� band around �=0, exhibits a discontinuous change
also at Uc1 and Uc2.

Interestingly, the nature of these two successive phase
transitions differs qualitatively. In Fig. 10�a�, we show the
imaginary part of the self-energy for the �o� band, �oo=�11
−�13, as a function of Matsubara frequency for four U val-
ues. Since the quasiparticle DOS of this band is symmetric
with respect to �=0, the mechanism with which it undergoes

a MIT is similar to that of a single-layer film, or that of a
multilayer film within the single-site DMFT treatment.
Namely, I�oo is proportional to �n at small �n up to Uc2�c1��
for increasing �decreasing� U, while it diverges as 1 /�n for
larger U values �U=9.3�, thus opening an energy gap. I�11
and I�13, whose difference equals I�oo, exhibit the same
behavior as a function of �n: they fall to zero or diverge as
1 /�n in the limit of �n→0, depending on whether U is lo-
cated below or above the critical Coulomb energies, respec-
tively. In the insulating phase, it has been found that they
behave at small �n as

I�11 =
A

�n
+ �11�n,

I�13 =
− A

�n
+ �13�n. �28�

In contrast, the transition of the two even bands is caused
essentially by the splitting of the �e1� and �e2� bands. As
shown in Fig. 10�b�, the diagonal components of the imagi-
nary part of the self energy,

I�e1e1
= I�e2e2

=
1

2
�I�11 + I�22 + I�13� , �29�

do not diverge as a function of �n even in the insulating
phase and tend to zero in the limit of �n→0. Here, as seen
from Eq. �28�, the diverging terms of �11 and �13 cancel
each other in Eq. �29�, which explains why I�e1e1

tends to
zero even for U=9.3�Uc2� .

On the other hand, their real components,

R�e1e1
=

U

2
+ 
2R�12,

R�e2e2
=

U

2
− 
2R�12, �30�

exhibit a discontinuous change at the critical Coulomb ener-
gies. To illustrate this behavior, we plot in Fig. 10�c�
R�e2e2

−U /2 for four U values. Its value at small �n for U
=8.75 and 9.3 in the insulating phase is seen to be much
larger than at U=7 and U=8 in the metallic phase. This is
shown more clearly in Fig. 11�a�, where we plot R�12 of the
isolated three-layer film at the first Matsubara frequency �0.
R�12, which determines the splitting between R�e1e1

and
R�e2e2

as indicated by Eq. �30�, is seen to exhibit a discon-
tinuous change at Uc1�c2�, giving rise to a downward �up-
ward� shift of the quasiparticle DOS of �e1� ��e2�� and the
concomitant opening of an insulating gap. This mechanism is
similar to that of the isolated two-layer film discussed in the
preceding subsection. In the present three-layer film, the
Green’s function is not diagonal with respect to the even
orbitals. However, since the off-diagonal Hamiltonian matrix
element,

FIG. 10. �Color online� Self-energy components of an isolated
3-layer film obtained by CDMFT as a function of Matsubara fre-
quency �n at �=100 in molecular orbital basis. �a� I�oo, �b� I�e1e1

,
and �c� R�e2e2

−U /2.
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�e1e2
=

i

2
�I�11 − I�22 + I�13� , �31�

approaches zero in the limit of �n→0 in the U range rel-
evant to the MIT of the even bands, the Green’s function and
consequently the quasiparticle DOS around �=0 are deter-
mined essentially by the diagonal elements of the Hamil-
tonian matrix.

In Fig. 11�b�, we plot the interlayer spin correlation func-
tion at �=0, �12�0�, as a function of U. As is seen, the MIT of
the even orbitals between Uc1 and Uc2 is accompanied by a
discontinuous change of �12��=0�. The phase on the larger U
side is characterized by enhanced negative spin correlations
between neighboring layers as in the case of the isolated
two-layer film, although its absolute value ��12�0���0.15 is
considerably smaller than the corresponding one for N=2
shown in Fig. 4�c�. On the other hand, �12�0� does not ex-
hibit a discontinuous jump at the second phase transition
between Uc1� and Uc2� , although its slope as a function of U
changes slightly for U�Uc2� . Since this transition can be
regarded as a Mott transition of a 2D single Hubbard band
originating from the odd orbital �o�, it does not necessarily
involve abrupt changes in nonlocal spin correlations in the
surface normal direction.

D. Sandwiched N=3 film

Finally, we consider a three-layer film sandwiched be-
tween two semi-infinite non-interacting metallic leads. In
Figs. 12�a� and 12�b�, we show −Gjj�� /2� as a function of U
for the outer �j=1,3� and central �j=2� layers, respectively.
Within single-site DMFT, there is no first-order phase tran-
sition, just as in the case N=2. For the outer two layers,
−Gjj�� /2�, remains nearly constant up to U�12 because of

the normal-metal proximity effects. For the central layer,
−Gjj�� /2� deviates slightly at around U=11 from a constant,
indicating that the condition T�TF ceases to hold near this
U value, so that this layer enters a non-Fermi-liquid state.
This is not unexpected, since the layer-dependent Fermi tem-
perature TF for the central layer is smaller than that of the
layers located next to the metallic leads.

Within CDMFT, on the other hand, a first-order phase
transition does exist. Nevertheless, it is a single transition at
Uc1�c2�, in contrast to the successive transitions found for the
isolated three-layer film, as shown in Fig. 9. While the qua-
siparticle DOS of the central layer drops strongly at these
critical Coulomb energies, in the outer layers this reduction
is much less pronounced. At larger U, −Gjj�� /2� of the outer
layers decreases gradually without undergoing a second
phase transition. These behaviors can be understood by pro-
jecting the Green’s function on the three MO’s. In Fig. 12�c�,
we plot −Gjj�� /2� for the orbitals defined in Eqs. �26� and
�27�. Evidently, the first-order phase transition originates
mainly from the two even bands, whose integrated spectral
weight near � drops strongly at Uc1�c2�. It does not vanish
completely at larger U values, since the metallic states of the
leads weakly penetrate into the sandwiched film. As the even
and odd bands couple with each other via many-body Cou-
lomb interactions, −Goo�� /2� also exhibits a small discon-
tinuous change at Uc1�c2�. However, at larger U values,
−Goo�� /2� decreases only slightly, without any phase transi-

FIG. 11. �Color online� �a� R�12 at the first Matsubara fre-
quency �0=	 /� and �b� �12��=0�, interlayer spin correlation at �
=0, as a function of U at �=100 by CDMFT. Solid circles and
triangles correspond to the isolated and sandwiched three-layer
films, respectively.

FIG. 12. �Color online� Gjj�� /2� of a sandwiched three-layer
film as a function of Coulomb energy U at �=100 for �a� outer
layer �j=1,3�, �b� middle layer �j=2�, and �c� three molecular or-
bitals. Solid circles: CDMFT; triangles: single-site DMFT.
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tion, in contrast to the isolated three-layer film.
The nature of the phase transition of the even bands is

essentially the same as that of the isolated film. As shown in
Fig. 11 by triangles, the real part of the off-diagonal compo-
nents of the self energy, �12=�23, exhibits a discontinuous
change at the critical Coulomb energy, Uc1�c2�, which leads to
the splitting of the more than half-filled �e1� band and the less
than half-filled �e2� band, and simultaneously to an abrupt
decrease in the quasiparticle DOS at �=0 of both bands. At
the same time, the interlayer spin correlation function at �
=0, �12�0�, exhibits a discontinuous change similarly to the
isolated three-layer film. On the other hand, as the quasipar-
ticle DOS of the �o� band is symmetric with respect to �
=0 and its quasiparticle peak is fixed to �, the �o� band
behaves similarly to a single-layer film or a multilayer film
within the single-site DMFT treatment. That is, it is subject
to the normal-metal proximity effects and its quasiparticle
peak at �=0 persists to exist as long as T�TF. This condi-
tion seems to be satisfied in the present case, which explains
why −Goo�� /2� remains nearly constant up to U�10. To
verify these points, we plot in Fig. 8�b� the three MO com-
ponents of the ED cluster spectra at U=11�Uc2. As is seen,
the DOS of the even bands exhibits a minimum at �=0 due
to the splitting of the two even bands, whereas the �o� com-
ponent of DOS has a peak at �=0.

In Fig. 13, we show the calculated conductance of the
half-filled three-layer film in the zero-bias limit as a function
of U, normalized by its value at U=0, �0. Within single-site
DMFT, � /�0 is unity up to around U=11, since I� j j at �
vanishes as long as the system is in a Fermi-liquid state.
� /�0 starts to deviate from unity at around U=11 as the
central layer deviates from Fermi-liquid behavior. Beyond
U�12, � decreases rather quickly, probably because both
the outer layers also enter a non-Fermi-liquid state. The be-
havior of the conductance obtained within CDMFT is quali-
tatively different from the one found in single-site DMFT. As
in the case N=2, R�12 �R�23� at �=0, which increases
quadratically with U, contributes to the scattering of conduc-
tion electrons and causes a quadratic deviation of � /�0 from
unity as a function of U. In addition, the first-order phase
transition of the even bands at the critical Coulomb energies
gives rise to a discontinuous change in � /�0

E. Discussion

So far we presented results for N=2 and 3. To extend the
CDMFT calculation to a four-layer film with 3 bath orbitals

per layer, one has to treat 16 orbitals in the ED formalism,
which is beyond our numerical capacity. We can complete
the calculation for N=4 by reducing the number of bath or-
bitals per layer to 2. But even in this case, calculating a
five-layer film requires matrix diagonalization for a 15-
orbital ED cluster, which is very demanding. Instead, we
give a brief discussion on the MIT of the thicker film at
half-filling. For N=2 and 3, it has been demonstrated that it
is useful to introduce the MO basis set to understand the
nature of MIT. For the isolated N-layer film, the lth MO,
�ml�, �1
 l
N� may be defined by

�ml� =
1

Al
�
j=1

N

sin� 	l

N + 1
j��j� , �32�

where Al denotes the normalization factor and �j� on the
right-hand side is the basis function of layer j. Considering
the energy dispersion in the plane, when U=0, each MO
forms a 2D energy band with band width 8t centered at

Eml
= − 2t cos� 	l

N + 1
� . �33�

These energy bands are classified into even and odd ones
with respect to the reflection symmetry about the center
plane of the film. The Hamiltonian, Green’s function, and
self-energy matrices are block diagonal with respect to the
even and odd bands.

The first question is whether MIT’s of both modes take
place at the same critical Coulomb energy U as in the case of
N=2, or selectively at two U values, as in the case of N=3.
If N=2M, the N bands are classified into M band pairs. Each
pair is made of one even band and one odd band, where the
DOS of the odd band is obtained by reflecting that of the
even band with respect to �=0. Namely, if we denote the
quasiparticle DOS of the even bands by �e��� and that of the
odd bands by �o���, they satisfy �e���=�o�−��. At half filling,
this property should hold irrespective of U. Accordingly, the
opening of the insulating gap in �e��� at �=0 necessarily
implies the gap opening in �o���. Thus, the even and odd
modes must undergo a single MIT at the same U. On the
other hand, if N=2M +1, the N bands are classified into the
M +1 even and M odd bands. The symmetry implies that
�e���=�e�−�� and �o���=�o�−��, but there is no particular
relationship between the two functions. Thus, it might hap-
pen that the MIT’s of the even and odd modes occur at dif-
ferent U values as in the case of N=3.

The second question concerns the mechanism of the MIT.
For N=2 and 3, we found that there are two gap-opening
mechanisms: Either the imaginary part of the local self-
energy diverges, or the real part of the off-diagonal self-
energy components between nearest-neighbor layers exhibits
a discontinuous change in the limit of �n→0. If N=2M +1
and M is an odd integer, among the M odd bands, the �M
+1� /2th odd band is centered at �=0. Since the second
mechanism works to split a pair of bands on both sides of
�=0 toward higher and lower energies, it will not be effec-
tive to the �M +1� /2th band, which has no partner band and
whose DOS is centered at �=0. Thus, we expect that all the
odd bands undergo a MIT via the divergence of the local

FIG. 13. �Color online� Normalized conductance in the zero-
bias limit for a three-layer film sandwiched between two semi-
infinite metallic leads as a function of U at �=100.
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self-energy. In the same way, if N=2M +1 and M is an even
integer, the DOS of the �M +2� /2th even band is centered at
�=0, and it is expected that all the even bands undergo a
MIT via the divergence of the local self-energy. For the other
cases, namely, the even and odd bands when N=2M, or the
even bands when N=2M +1 �M odd�, or the odd bands when
N=2M +1 �M even�, it is not excluded that the splitting of
the pairs of bands by the second mechanism gives rise to an
insulating gap at �=0. However, in these case, the separation
of the couple of bands, which are on both sides of �=0 and
the closest to �=0, becomes smaller with increasing N,
which would make the gap opening through the splitting of
the two bands more difficult. Thus, we presume that MIT by
the second mechanism may be realized only at small N
where the separation between neighboring bands is relatively
large. Returning to the first question, if the second mecha-
nism does not take place and the insulating gap is opened by
only one mechanism, i.e., by the divergence of local self-
energies, the even and odd bands may undergo a single MIT
not only for N=2M but also for N=2M +1.

IV. SUMMARY

We investigated the effect of interplanar Coulomb corre-
lations on the electronic structure of strongly correlated het-
erostructures by applying the cluster DMFT method com-
bined with finite-temperature exact diagonalization. As a
model system, we considered a half-filled single-band Hub-
bard model in a thin film geometry, which is either free
standing or sandwiched between noninteracting semi-infinite
metallic leads. The 1D atomic chain oriented normal to the
layer plane is chosen as a cluster unit in solving the quantum
impurity problem. Thus, the off-diagonal components of the
correlation-induced self-energy between layers are fully
taken into consideration. Intraplanar intersite correlations are
neglected so far for computational reasons.

We have shown that, as a result of interlayer spatial fluc-
tuations, the nature of the metal-insulator transition in these

correlated heterostructures is significantly more complex
than in the usual single-site DMFT description. In particular,
we have demonstrated that, in isolated thin films, two types
of first-order metal-insulator phase transitions can occur. One
is a conventional one in which the imaginary part of the local
self-energy of strongly correlated atomic sites diverges. The
other is absent in previous single-site DMFT studies of het-
erostructures and is associated with a discontinuous change
of the real part of the off-diagonal self-energy components
between neighboring layers. This mechanism gives rise to a
splitting of the even and odd molecular orbital bands �N
=2�, or a splitting of the two even molecular orbital bands
�N=3� of the correlated thin film and eventually to the open-
ing of an insulating gap. Depending on the number of layers
constituting the film, either one or both of these two types of
phase transitions may take place.

For thin films sandwiched between metallic leads, the
conventional type of phase transition disappears because of
the normal-metal proximity effects. Nevertheless, this prox-
imity effect is much weaker than in single-site DMFT. The
second type of phase transition continues to exist and influ-
ences significantly the electronic properties of the film. For
example, the normal component of the conductance may ex-
hibit a jump at critical Coulomb energies. The key point of
these results is that, because of interlayer Coulomb fluctua-
tions in the strongly correlated film, the fragile Fermi liquid
that is the hallmark of single-site DMFT treatments, is either
destroyed or greatly weakened. Thus, the metallicity induced
in the Mott insulator via the neighboring leads strongly re-
duced. It would be interesting to compare these results due to
interplanar correlations with analogous effects caused by
spatial fluctuations within the atomic planes of the correlated
film.

ACKNOWLEDGMENTS

The work of H.I. was supported by the Grand-in-Aid for
Scientific Research �Grant No. 20540191� from the Japan
Society for Promotion of Science.

1 A. Ohtomo and H. Y. Hwang, Nature �London� 427, 423 �2004�.
2 C. H. Ahn, K. M. Rabe, and J.-M. Triscone, Science 303, 488

�2004�.
3 H. Yamada, Y. Ogawa, Y. Ishii, H. Sato, M. Kawasaki, H. Akoh,

and Y. Tokura, Science 305, 646 �2004�.
4 E. Dagotto, Science 318, 1076 �2007�.
5 N. Reyren, S. Thiel, A. D. Caviglia, L. Fitting Kourkoutis, G.

Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi,
D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Man-
nhart, Science 317, 1196 �2007�.

6 A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature
�London� 419, 378 �2002�.

7 M. Takizawa, H. Wadati, K. Tanaka, M. Hashimoto, T. Yoshida,
A. Fujimori, A. Chikamatsu, H. Kumigashira, M. Oshima, K.
Shibuya, T. Mihara, T. Ohnishi, M. Lippmaa, M. Kawasaki, H.
Koinuma, S. Okamoto, and A. J. Millis, Phys. Rev. Lett. 97,

057601 �2006�.
8 L. Fitting Kourkoutis, Y. Hotta, T. Susaki, H. Y. Hwang, and D.

A. Muller, Phys. Rev. Lett. 97, 256803 �2006�.
9 H. Wadati, Y. Hotta, A. Fujimori, T. Susaki, H. Y. Hwang, Y.

Takata, K. Horiba, M. Matsunami, S. Shin, M. Yabashi, K.
Tamasaku, Y. Nishino, and T. Ishikawa, Phys. Rev. B 77,
045122 �2008�.

10 T. Higuchi, Y. Hotta, T. Susaki, A. Fujimori, and H. Y. Hwang,
Phys. Rev. B 79, 075415 �2009�.

11 M. Potthoff and W. Nolting, Phys. Rev. B 59, 2549 �1999�; 60,
7834 �1999�.

12 See also M. Potthoff, Phys. Rev. B 64, 165114 �2001�; S.
Schwieger, M. Potthoff, and W. Nolting, ibid. 67, 165408
�2003�.

13 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 �1996�.

H. ISHIDA AND A. LIEBSCH PHYSICAL REVIEW B 82, 045107 �2010�

045107-12

http://dx.doi.org/10.1038/nature02308
http://dx.doi.org/10.1126/science.1092508
http://dx.doi.org/10.1126/science.1092508
http://dx.doi.org/10.1126/science.1098867
http://dx.doi.org/10.1126/science.1151094
http://dx.doi.org/10.1126/science.1146006
http://dx.doi.org/10.1038/nature00977
http://dx.doi.org/10.1038/nature00977
http://dx.doi.org/10.1103/PhysRevLett.97.057601
http://dx.doi.org/10.1103/PhysRevLett.97.057601
http://dx.doi.org/10.1103/PhysRevLett.97.256803
http://dx.doi.org/10.1103/PhysRevB.77.045122
http://dx.doi.org/10.1103/PhysRevB.77.045122
http://dx.doi.org/10.1103/PhysRevB.79.075415
http://dx.doi.org/10.1103/PhysRevB.59.2549
http://dx.doi.org/10.1103/PhysRevB.64.165114
http://dx.doi.org/10.1103/PhysRevB.67.165408
http://dx.doi.org/10.1103/PhysRevB.67.165408
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13


14 For recent reviews, see K. Held, Adv. Phys. 56, 829 �2007�; G.
Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcol-
let, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 �2006�.

15 S. Okamoto and A. J. Millis, Nature �London� 428, 630 �2004�.
16 S. Okamoto and A. J. Millis, Phys. Rev. B 70, 241104�R�

�2004�.
17 S. Okamoto and A. J. Millis, Phys. Rev. B 72, 235108 �2005�.
18 J. K. Freericks, Phys. Rev. B 70, 195342 �2004�.
19 J. K. Freericks, V. Zlatić, and A. M. Shvaika, Phys. Rev. B 75,

035133 �2007�.
20 L. Chen and J. K. Freericks, Phys. Rev. B 75, 125114 �2007�.
21 H. Zenia, J. K. Freericks, H. R. Krishnamurthy, and Th. Prus-

chke, Phys. Rev. Lett. 103, 116402 �2009�.
22 W.-Ch. Lee and A. H. MacDonald, Phys. Rev. B 74, 075106

�2006�; 76, 075339 �2007�.
23 R. W. Helmes, T. A. Costi, and A. Rosch, Phys. Rev. Lett. 101,

066802 �2008�.
24 S. Yunoki, A. Moreo, E. Dagotto, S. Okamoto, S. S. Kancharla,

and A. Fujimori, Phys. Rev. B 76, 064532 �2007�.
25 W. Heindl, Th. Pruschke, and J. Keller, J. Phys.: Condens. Mat-

ter 12, 2245 �2000�.
26 I. González, S. Okamoto, S. Yunoki, A. Moreo, and E. Dagotto,

J. Phys.: Condens. Matter 20, 264002 �2008�.
27 T. Oka and N. Nagaosa, Phys. Rev. Lett. 95, 266403 �2005�.
28 S. S. Kancharla and E. Dagotto, Phys. Rev. B 74, 195427

�2006�.
29 A. Rüegg, S. Pilgram, and M. Sigrist, Phys. Rev. B 75, 195117

�2007�.
30 H. Ishida and A. Liebsch, Phys. Rev. B 79, 045130 �2009�.
31 G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli, Phys. Rev.

Lett. 87, 186401 �2001�.
32 B. Kyung, S. S. Kancharla, D. Sénéchal, A.-M. S. Tremblay, M.

Civelli, and G. Kotliar, Phys. Rev. B 73, 165114 �2006�.
33 Y. Z. Zhang and M. Imada, Phys. Rev. B 76, 045108 �2007�.
34 H. Park, K. Haule, and G. Kotliar, Phys. Rev. Lett. 101, 186403

�2008�.
35 J. E. Inglesfield, Comput. Phys. Commun. 137, 89 �2001�.
36 D. Kalkstein and P. Soven, Surf. Sci. 26, 85 �1971�.
37 M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 �1994�.
38 C. A. Perroni, H. Ishida, and A. Liebsch, Phys. Rev. B 75,

045125 �2007�.
39 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-

nery, Numerical Recipes in Fortran 77 �Cambridge University
Press, New York, 1986–1992�, p. 106; J. Stoer and R. Burlisch,
Introduction to Numerical Analysis �Springer, New York, 1980�.

40 S. Okamoto, Phys. Rev. Lett. 101, 116807 �2008�.
41 S. Datta, Electronic Transport in Mesoscopic Systems �Cam-

bridge University Press, Cambridge, England, 1995�.
42 Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 �1992�.

CLUSTER DYNAMICAL MEAN-FIELD STUDY OF… PHYSICAL REVIEW B 82, 045107 �2010�

045107-13

http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1038/nature02450
http://dx.doi.org/10.1103/PhysRevB.70.241104
http://dx.doi.org/10.1103/PhysRevB.70.241104
http://dx.doi.org/10.1103/PhysRevB.72.235108
http://dx.doi.org/10.1103/PhysRevB.70.195342
http://dx.doi.org/10.1103/PhysRevB.75.035133
http://dx.doi.org/10.1103/PhysRevB.75.035133
http://dx.doi.org/10.1103/PhysRevB.75.125114
http://dx.doi.org/10.1103/PhysRevLett.103.116402
http://dx.doi.org/10.1103/PhysRevB.74.075106
http://dx.doi.org/10.1103/PhysRevB.74.075106
http://dx.doi.org/10.1103/PhysRevLett.101.066802
http://dx.doi.org/10.1103/PhysRevLett.101.066802
http://dx.doi.org/10.1103/PhysRevB.76.064532
http://dx.doi.org/10.1088/0953-8984/12/10/309
http://dx.doi.org/10.1088/0953-8984/12/10/309
http://dx.doi.org/10.1088/0953-8984/20/26/264002
http://dx.doi.org/10.1103/PhysRevLett.95.266403
http://dx.doi.org/10.1103/PhysRevB.74.195427
http://dx.doi.org/10.1103/PhysRevB.74.195427
http://dx.doi.org/10.1103/PhysRevB.75.195117
http://dx.doi.org/10.1103/PhysRevB.75.195117
http://dx.doi.org/10.1103/PhysRevB.79.045130
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevB.73.165114
http://dx.doi.org/10.1103/PhysRevB.76.045108
http://dx.doi.org/10.1103/PhysRevLett.101.186403
http://dx.doi.org/10.1103/PhysRevLett.101.186403
http://dx.doi.org/10.1016/S0010-4655(01)00173-4
http://dx.doi.org/10.1016/0039-6028(71)90115-4
http://dx.doi.org/10.1103/PhysRevLett.72.1545
http://dx.doi.org/10.1103/PhysRevB.75.045125
http://dx.doi.org/10.1103/PhysRevB.75.045125
http://dx.doi.org/10.1103/PhysRevLett.101.116807
http://dx.doi.org/10.1103/PhysRevLett.68.2512

